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Protostars reveal the 
origins of solar systems

• A dense, infalling circumstellar envelope 
is still present

• Outflows are clearing the envelope
• A protoplanetary disk is in the earliest 

stage of its evolution
• The majority of the stellar mass is being 

assembled
• Protostellar lifetime: ∼0.5 Myr



Variability: a guide to stellar mass assembly
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• Many causes of 
variability (extinction, 
rotation, etc.)

• Luminosity changes 
are primarily due to 
changes in the 
accretion rate

• Luminosity changes 
affect disk conditions
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Art by T. Pyle (Caltech/IPAC)
Models from Liu et al. (2022)



Variability can be gradual or sudden

• Several types of 
accretion variability
• Long-term decline in 

luminosity as the 
envelope depletes

• Short-term low-
amplitude changes

• Sudden, short-lived 
bursts

• Which of these are 
most important for 
mass assembly?

One model of the evolution of accretion rate and stellar mass (Bae et al. 2014)



Embedded protostars present observing 
challenges

• Optical/NIR spectroscopy tells us 
about accretion processes in more 
evolved young stellar objects –
impossible for younger, embedded 
protostars that are still forming

• Mid-IR is strongly affected by 
extinction

• Sub-mm responds to temperature 
changes

Class 0
Lbol = 20 L☉
Tbol = 44 K

SED and model from Furlan et al. (2016)



Mid-IR and sub-mm campaigns set the stage

Variability, including bursts, 
is well documented on 
both sides of the SED peak, 
but flux changes translate 
only ambiguously to 
luminosity changes
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WISE protostellar light curves (Fischer et al. 2023; ∆t = 12 yr)

Top row: 2004; Bottom row: 2017 (∆t = 13 yr) 

Right: JCMT protostellar
light curves (Lee et al. 

2021; ∆t = 4 yr)
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Protostellar bursts in Spitzer images (Zakri et al. 2022)



Far IR is needed to track mass assembly

• Starting with SED models for 319 
protostars, we increased the 
luminosity by 10x, 50x, or 100x 

• Evaluated the effect on
• 4.6 µm flux density (WISE)
• 25 – 235 µm luminosity (PRIMA)

• Without far-IR monitoring, hard to 
estimate ∆Ṁ from ∆L

• Youngest protostars are not even 
visible in the mid IR (Stutz et al. 2013)

Mid-IR ∆F has a high 
dispersion; depends 
on cavity geometry, 
extinction

Far-IR ∆L is more 
tightly clustered 
around the input ∆L, 
more so for young 
Class 0 protostars

Dispersions shrink by factors of ∼ 3 – 4



Herschel & SOFIA showed 
the value of the far IR
• Herschel

• Limited time coverage due to 3 yr mission 
lifetime, lack of emphasis on time domain

• Provided a critical epoch 0

• SOFIA
• No capacity for surveys
• Important for follow-up of known bursts

Herschel 70 µm and 160 µm light curves of protostars 
(Billot et al. 2012; ∆t = 6 wk) 

A SOFIA 89 µm image from 2019 
shows the end of a protostellar
burst seen in a Herschel 70 µm 
image from 2010 (Zakri et al. 2022)



Key Question for PRIMA: Do protostars accrete 
the majority of their masses in >100x bursts?
• About 1000 yr between major mid-IR 

bursts of a given protostar (Fischer et al. 
2019; Park et al. 2021)

• Monitor 2000 protostars for 5 yr
• Discover ∼10 major bursts 
• Determine durations of bursts

• Answer additional questions with 
protostellar light curves
• What is the burst power spectrum?
• How do burst amplitudes and durations 

depend on evolutionary state? Mass of the 
central object? Disk mass and radius?

Monte Carlo simulations by Rachel Lee (UConn)
Observe ∼few × 103 protostars for good statistics



Variability survey

• Repeatedly image about 2000 
protostars in the nearest 1.5 kpc
• 30% are Class 0 (youngest)
• Distributed across ∼55 deg2 of 

various molecular clouds (Cygnus X, 
Orion, Mon R2, Aquila, Perseus, etc.)

• Long maps are most efficient
• Convenient for protostars, which 

tend to be clustered along filaments

Example:   
Mapping Orion 
(∼10 deg2)

Blue contours: 500 µm 
Herschel map (Stutz & 
Kainulainen 2015)

Gray boxes: Locations of 
319 protostars (darker 
boxes contain more; 
Fischer et al. 2020)

Purple boxes: Tentative 
PRIMA mapping areas



Cadence

• If mapping speed is 1 deg2/hr, need 
∼55 hr to map nearest 2000 protostars

• Multiple visits per year
• Sample a range of timescales from ∼8 wks

to the full five-year mission
• Combining PRIMA (∼2035) with Herschel 

(∼2010) extends ∆t to 25 yr
• Explore structure in light curves to 

constrain physical mechanisms

• Repeat a ∼55 hr survey ∼10 times for 
∼550 total hours Blue shading denotes accretion-related variability 

(Fischer et al. 2023)

5 yr



Time-domain mapping with PRIMA will show 
us how stars get their masses
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