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Variability: a guide to stellar mass assembly

L = Lonot + Lacc = Lpnot + GMM, /R,

 Many causes of
variability (extinction,
rotation, etc.)

 Luminosity changes
are primarily due to Vi = 4% 107 Mg yr-1
changes in the
accretion rate

 Luminosity changes
affect disk conditions
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Variability can be gradual or sudden

Several types of
accretion variability

* Long-term decline in
luminosity as the
0.6 envelope depletes

Time [Myr]  Short-term low-
amplitude changes

e Sudden, short-lived
bursts

Which of these are
most important for
mass assembly?

Accretion Rate [Mg yr

One model of the evolution of accretion rate and stellar mass (Bae et al. 2014)
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Mid-IR and sub-mm campaigns set the stage
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Protostellar bursts in Spitzer images (Zakri et al. 2022) 2017 2018
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Far IR is needed to track mass assembly

Starting with SED models for 319
protostars, we increased the
luminosity by 10x, 50x, or 100x

Evaluated the effect on
e 4.6 um flux density (WISE)
e 25—235 um luminosity (PRIMA)

Without far-IR monitoring, hard to
estimate AM from AL

Youngest protostars are not even
visible in the mid IR (Stutz et al. 2013)
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Dispersions shrink by factors of ~3 -4

Class O protg_stors
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Burst Factor

Mid-IR AF has a high
dispersion; depends
on cavity geometry,
extinction
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L,5-,35 burst / quiescence

—

Class O protostars

40 60 80 100
Burst Factor

Far-IR AL is more
tightly clustered
around the input AL,
more so for young
Class O protostars
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ne value of the far IR

erschel & SOFIA showed

PACS 160 um

20 30
Time [MJD-55621]
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Herschel

* Limited time coverage due to 3 yr mission
lifetime, lack of emphasis on time domain

* Provided a critical epoch 0

SOFIA

* No capacity for surveys
* Important for follow-up of known bursts

Time [MJD-55621]

HOY J053524.23-050831.9 HOY J053515.98-050004.7
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Herschel /PACS, 70 um, 2010 Sept 10 SOFIA/HAWC+, 89 um, 2019 Sept 10

Herschel 70 um and 160 um light curves of protostars
(Billot et al. 2012; At = 6 wk)

A SOFIA 89 um image from 2019
] shows the end of a protostellar
1 burst seenin a Herschel 70 um
image from 2010 (Zakri et al. 2022)
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Key Question for PRIMA: Do protostars accrete
the majority of their masses in >100x bursts?

e Abo ut 1000 yr between major m|d-|R Mean Fraction of Stars with 100x Burst for Different Cluster Sizes
bursts of a given protostar (Fischer et al.
2019; Park et al. 2021)

 Monitor 2000 protostars for 5 yr

 Answer additional questions with

Discover ~10 major bursts

0.015

Determine durations of bursts
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protostellar light curves

What is the burst power spectrum? 0000

How do burst amplitudes and durations
depend on evolutionary state? Mass of the e
central object? Disk mass and radius? Number of Stars in Cluster

Monte Carlo simulations by Rachel Lee (UConn)
Observe ~few x 103 protostars for good statistics

-0.005




ol LDN 1622

Variability survey

Example:

Mapping Orion

(~10 deg?)

* Repeatedly image about 2000
protostars in the nearest 1.5 kpc

 30% are Class O (youngest)

Blue contours: 500 um
Herschel map (Stutz &
Kainulainen 2015)

Gray boxes: Locations of
319 protostars (darker
boxes contain more;
Fischer et al. 2020)

* Distributed across ~55 deg? of
various molecular clouds (Cygnus X,
Orion, Mon R2, Aquila, Perseus, etc.)
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* Long maps are most efficient

* Convenient for protostars, which
tend to be clustered along filaments

Purple boxes: Tentative
PRIMA mapping areas

LDN 1641 (Orion A)

89 88 87 86 85
Right Ascension (°)




Variability Behavior in Young Stellar Objects (YSOs)

Ca d e n C e [day] [week] [month] [year] [decadelgmmlcentury]

91601202 / HY1

V2492 Cyg
Deep Fades

FU Ori
Outbursts

* |f mapping speed is 1 deg?/hr, need

V1647 Ori
~55 hr to map nearest 2000 protostars & Outbursts
£
* Multiple visits per year 2 B L
I UX Ori
* Sample a range of timescales from ~8 wks |4 Circumbinary 208
to the full five-year mission & Efotostellor
 Combining PRIMA (~2035) with Herschel Bursters 2
(~2010) extends At to 25 yr A
S -_—
* Explore structure in light curves to MagnetoaphENEED
o . . Accretion cli
constrain physical mechanisms NaToWDIps - Siarspats.

102 100 10! 102 103 15 . 10°
Full Cycle Event Timescale [day] y

* Repeat a ~55 hr survey ~10 times for

~550 total hours Blue shading denotes accretion-related variability
(Fischer et al. 2023)




Time-domain mapping with PRIMA will show
us how stars getiheir masses

Collaborators on this science case include &
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