Extragalactic magnetism using far-infrared polarimetry with PRIMA

Stanford University elopezrodriguez@stanford.edu

Stellar and gas distribution as a function of cosmic time

z = 4.7 RTnsCRiMHD

Martin-Alvarez et al. (2022: Pandora Project I)

Stellar and Magnetic Field distribution as a function of cosmic time

z = 5.4 RTnsCRiMHD

Stellar and gas distribution as a function of cosmic time

z = 5.4 RTnsCRiMHD

Magnetic fields permeate the interstellar and intergalactic medium

SALSA: Survey of extragALactic magnetiSm with SOFIA

M82

Centaurus A

NGC 2146

Antennae

NGC 1068

Borlaff etal. (2021) Lopez-Rodriguez (2020, 2021a,b, 2022b, 2023a)

FIR B-field is more turbulent than the Radio B-field

4	1	F	Ē	ō	-	_	
_	-	-	-	-	-	-	
_	-	-	-	-	-	-	
_	-	_	_	-	-	-	
_	_	_	_	_	_	_	
	_	_	_	_	_	_	
							ł

Turbulent B-field is located in the dense and cold ISM associated with SF regions

Radio - P consistent with constant across SFR.

FIR

- P decreases due to an increment of the turbulent B-field

- Tighter depolarization rate with SFR

- ζ decreases due to an increase of turbulent Bfields driven by the SF regions.

- FIR polarimetry is more sensitive to the turbulent Bfield driven by SF regions than Radio polarimetric obs.

3D structure of the B-field using radio and FIRRadio: warm and diffuse ISMFIR: cold and dense ISMh ~ 1-2 kpch < 0.5 kpc</td>

Krause et al. (2018,2020)

Jones et al. (2020) FWHM (HAWC+): 13.6"

Observations

Simulated PRIMA polarimetric

pc resolution

Simulations from Martin-Alvarez et al. (2022: Pandora Project I)

FIR (89 um) Radio (18 and 22 cm)

Dust properties: FIR polarized spectrum of Starburst galaxies

At least two dust components are required to explain the polarized SED of starbursts

P constant due to a single dust component and optically thin dust

Lopez-Rodriguez et al. (2022b, SALSA IV)

P may decrease due to dust temperature gradients along the LOS in the outflow

THE COSMIC HISTORY OF THE B-FIELDS IN GALAXY EVOLUTION USING FIR/SUB-MM POLARIMETRY

Mergers

Lopez-Rodriguez 2022c

Turbulent dynamo **B-field amplification**

Active galaxies

Lopez-Rodriguez 2021b Turbulent dynamo **B-field amplification**

Lopez-Rodriguez 2021a Turbulent dynamo Permeate IGM with B-fields

- How did the evolution of galaxies in mergers affect magnetic fields?
- Is the circumgalactic medium magnetized?
- How has the magnetic field been amplified by interaction/SF in galaxies?
- What is the structure of the magnetic field around an active nucleus?

Interaction, Star formation, galactic dynamo

Borlaff et al. 2021

Turbulent + Mean-field dynamo SF disturbs/amplify mean-field

AGN, Star formation, galactic dynamo

Lopez-Rodriguez et al. 2020

Mean-field dynamo

Saturated B-field close equipartition with turbulent kinetic energy in the ISM

The turbulent kinetic and magnetic energy are in equipartition in the outflow

Energy budget:

This method assumes:

Lopez-Rodriguez et al. (2021)

B-fields at high redshift using sub-mm polarimetry Gravitationally lensed galaxies at high-redshift

Geach, Lopez-rodriguez et al. (submitted to Nature)

2 kpc-scale ordered B-field parallel to a fast rotating disk in a starburst at 3Gyr after Big Bang.

> ALMA polarimetric observations 860 um (dust continuum polarization) at 0.5" resolution

Gravitational lensing polarimetric model

